
MALWARE DETECTION BY CFG ANALYSIS, DECEMBER 2022 1

Malware Detection Using Unsupervised
Clustering of Binary File Control Flow Graphs

K. Liyanage, R. Pearsall, C. Izurieta, B. M. Whitaker

Abstract—Detecting malware from binary files is an important task in the research and development of the fields of cybersecurity and
machine learning. This paper discusses the viability of unsupervised machine learning clustering techniques to identify differences
between graph representations of benign software and malware. This paper evaluates the utilization of graph analysis and
unsupervised clustering in separating malware and benign binary files. The binary files are first converted into a control flow graph
(CFG) representation. This is carried out by the CFGEmulated() function of the angr Python library. Then the graphs are converted to a
vector representation using the Graph2Vec algorithm. Finally, several unsupervised clustering techniques were used on the dataset.
Preliminary results indicate the viability of using CFGs and unsupervised clustering as a malware detection method.

Index Terms—Control Flow Graphs, Clustering, Malware.

✦

1 INTRODUCTION

IN recent years the number of attacks by malware shared
through the internet has increased. To avoid damage to

computer systems, effective identification and classification
of malicious programs from benign programs are necessary.
In this research, we focus on analyzing binary files using
control flow graphs (CFGs) and exploring the viability
of using unsupervised clustering techniques for detecting
malware. While it has not been established that there is a
significant difference between CFGs belonging to malware
and benign programs, we hypothesize that such a difference
exists. The research focus is to explore the viability of
Machine Learning (ML) as an effective tool in identifying
malware through graph analysis of CFGs. This work is an
extension of preliminary work done by Veronika et al for the
Department of Homeland Security [1].

1.1 Goals and Contributions
• Benign and Malware dataset. As the initial step, we

curate a dataset of benign and malicious programs. The
dataset consists of benign operating system files as well
as malware provided by Hoplite industries1. Importantly,
this curated dataset of CFGs obtained from malware and
benign binary files is publicly shared. Publicly available
combined (Benign + Malware) datasets are rare, hence the
dataset published with this manuscript will help future
researchers to test and evaluate new algorithms.

• A robust framework for unsupervised clustering. A ro-
bust end-to-end workflow is proposed to minimize model
over-fitting and model contamination. The framework

• K. Liyanage and B. M. Whitaker are with the Department of Electrical and
Computer Engineering, Montana State University, Bozeman, MT, 59719.
E-mail: bradley.whitaker1@montana.edu

• R.Pearsall and C. Izurieta are with the Gianforte School of Computing,
Montana State University, Bozeman, MT, 59719.

Funded by the Department of Homeland Security (DHS) Science and Tech-
nology (S&T) Directorate under contract number 70RSAT22CB0000005. Any
opinions contained herein are those of the authors and do not necessarily reflect
those of DHS S&T: Manuscript submitted Feb 15, 2023.

1. https://www.hopliteindustries.com/

is flexible for swapping and trying different methods
for research purposes. As with the dataset, the software
described in this manuscript is also publicly available.

• Viability study. A discussion regarding the acquired re-
sults is provided, showing the viability of clustering to
separate some benign and malicious files. In addition, we
present challenges and possibilities for future expansions.

The overview of the analysis is shown in Figure 1. First,
the binary files are converted into CFGs. This is carried out
by the CFGEmulated() function of the angr python library.
The graphs are then converted to a fixed-length vector rep-
resentation using the Graph2Vec algorithm [2]. It can be seen
that usually a dictionary of rooted sub-graphs is learned and
then the similarity is calculated between the sub-graphs and
the CFGs of the binaries. A dictionary of rooted sub-graphs
is learned and then the similarity is calculated between the
sub-graphs and the CFG representations of the binaries.
Using the Graph2Vec graph embedding method the graphs
are first converted into a document using the Weisfeiler-
Lehman graph kernel where each “word” is a rooted sub-
graph. A whole graph is represented as a document with
a collection of “words”. Then convert the documents into
a fixed-length vector representation of the graph embed-
ding via Doc2Vec algorithm. The implementations of the
Graph2Vec is shown in Figure 2, where the graphs are
first converted into a word document using the Weisfeiler-
Lehman graph kernel [3]. The algorithm then uses Doc2Vec
[4] to create a fixed-length vector describing the whole
graph. Finally, several unsupervised clustering techniques
are used on the dataset. This allows for determining the
viability of using CFGs as a static malware detection method
with unsupervised clustering. The source code associated
with this manuscript is hosted on GitHub2 and the CFG
dataset is archived on Zenodo3.

2. https://github.com/MSUSEL/unsupervised-graph
3. https://doi.org/10.5281/zenodo.7630371

MALWARE DETECTION BY CFG ANALYSIS, DECEMBER 2022 2

Fig. 1. Overview of binary file analysis using CFGs

Fig. 2. Graph2Vec implementation overview with Weisfeiler-Lehman
hash words and Doc2Vec algorithms.

2 BACKGROUND

2.1 Preliminary work summary

Preliminary work in this project was conducted by Veronika
et al. [1]. The authors proposed a basic framework with
a synthetic program dataset using prospective tools and
methods. They curated two datasets, namely the synthetic
graph dataset and the distinct benign code (DBC) dataset.
The datasets were used to explore the effectiveness of graph
embedding techniques and clustering performance.

The synthetic graph dataset is a set of various graph
structures to evaluate the effectiveness of the graph embed-
ding methods. The graphs were created in the networkX4

[5] Python package. The dataset consists of 100 graphs per
type of path, cycle, complete, Erodos-Renyi, Barabasi-Albert and,
Neuman-Watts-Strogatz graphs. The graphs were converted
to a vector representation through Graph2Vec implementa-
tion from the karateclub5 [6] python package. Observation
showed a separation between different graph categories
when the vector dimensions are 8 and above.

The DBC dataset comprises 49 variations for each of five
basic C++ programs fibonacciSequence, isPrime, productPrices,
randomList, and repeatingString. The control flow graphs
(CFG) were constructed by using the binary disassembly
tool angr6 [7] python package. The tool was chosen consider-
ing the compatibility with the existing Idaho National Labs’
@DISCO7 tool. CFGs were created using CFGFast(), a static
analysis function in angr. Three graph embedding methods
were considered (Local Degree Profile (LDP) [8], Graph2Vec [2],
and GL2Vec [9]) to create vector representations. Then the
vectors were clustered using three unsupervised methods:
agglomerative, K-means and, DBSCAN. The clustering is eval-
uated using the Normalized Mutual Information (NMI) metric.

4. https://networkx.org/
5. https://karateclub.readthedocs.io/
6. https://docs.angr.io/
7. https://github.com/idaholab/atDisco

The scikit-learn8 [10] python package was used for clustering
algorithms and metrics. Graph2Vec performed better with
K-means and Agglomerative clustering. Meanwhile, GL2Vec
performed uniformly for all three methods and outper-
formed Graph2Vec for DBSCAN only. LDP did not show any
significant performance for any clustering method.

The report suggested experimenting with different
graph embedding techniques, graph representations, and
disassembly tools. Also, it suggested using large-scale of
data covering various sources. Further, it suggested try-
ing alternate clustering techniques and anomaly detection
methods.

2.2 Malware
Malicious ware, or malware, is a general term used to
describe an unwanted, unauthorized computer program or
script with the intent to cause some kind of damage or
harm. System administrators are unaware of the presence
and behavior of malware, and if they were to be aware, they
would not permit such program to run on the system [11].
Malware typically attempts to gain unauthorized access to
some system with the goal of stealing sensitive or financial
information, disrupting services, or gaining remote access
for later use.

As thousands of new malware strains begin to sur-
face each day, the ability to detect malware before it can
cause harm has been an area of focus for many cyberse-
curity experts. Bazrafshanet et al. define three distinct mal-
ware detection methodologies: Signature-based, Behavioral-
based, and Heuristic-based [12]. Signature-based detection
is the most common method for detecting malware. This
technique involves searching for a known digital footprint
that has already been detected and recorded in the past.
File hashes and byte strings that represent things such as
function names, IP addresses, or coding structures are both
commonly scanned for in static detection. Unfortunately,
static-based detection methods fail to detect new forms of
malware or malware that obfuscates itself.

Behavior-based detection uses dynamic analysis for eval-
uating malware, which is the process of analyzing code
or a script by executing it and observing its actions. Dy-
namic analysis is typically done in a sandbox or virtual
environment so malware is not able to cause any damage.
Behavioral-based detection includes monitoring Windows
registry activity, binary instructions that are executed, and
the presence of data in RAM during execution.

Lastly, heuristic-based detection leverages machine
learning or data mining in order to make decisions. Features
from malware are extracted and then used to train a ma-
chine learning classifier. Features that are extracted include
operating system API calls, opcode frequency, and program
control flow. Such attributes of a program help capture the
behavior of a program and provide a set of traits for a
machine learning algorithm to learn from.

2.3 Control Flow Graphs
Control Flow Graphs (CFGs) are one of the most common
graph representations of code used for binary analysis. Sev-
eral different graph representations were explored for this

8. https://scikit-learn.org/

MALWARE DETECTION BY CFG ANALYSIS, DECEMBER 2022 3

research, but Control Flow Graphs yielded the best results.
The primary focus of a CFG is to illustrate the control flow,
or order of executed statements, of a program. A node in
this directed graph typically represents a basic block of
code, which is a sequence of instructions that are executed
sequentially with no jumps or branches to other sections
of code. The edges represent transitions from a basic block
to a basic block through function calls, return statements,
program branches, or looping. A binary can be converted
into a CFG first by disassembling it into some intermediate
low-level representation, such as an assembly language. The
assembly language can then be analyzed and searched for
program jumps and branch targets to determine the control
flow. Several tools already exist for generating a control
flow graph from a binary, such as Ghidra, Binary Analysis
Platform, and angr. Several works have been published that
utilize machine learning with CFGs [13], [14], [15].

2.4 Graph2Vec Graph Embedding
Once the CFGs are generated, the graphs have to be rep-
resented as a fixed-length vector for machine learning al-
gorithms. Several graph embedding methods can be used
for vector representation purposes. In this work, we use
the Graph2Vec method. As shown in Figure 2, the typical
implementation of this algorithm can be divided into several
stages.

2.4.1 Weisfeiler-Lehman (WL) graph hash
The WL hash algorithm is a simple algorithm used to
identify common sub-tree patterns in a set of graphs. The
algorithm initially relabels the graph nodes according to
the number of its neighbors. It then iteratively performs a
breadth-first search for neighboring nodes. At each iteration,
the base node is relabeled by adding information about its
neighbors’ labels. In each iteration, the appended relabel
is converted to a fixed-length unique hash value. These
techniques produce deterministic and unique relabeling for
each node depending on the number of iterations.

It is possible to use different graph kernels for iden-
tifying sub-tree patterns. A recent extensive survey has
listed different graph kernels and their comparison [16].
In the survey, the authors provide a helpful “practitioner’s
guide”, a recommendation pipeline for selecting a graph
kernel according to a specific application. (See Fig. 10 in
[16]. For malware applications, the WL sub-tree kernel is
justified through this pipeline. Since program CFGs do not
contain edge information and are typically large graphs, WL
kernels can be considered. For our study, we only consider
the local structures of the graphs. Hence, the WL sub-tree
kernel is justified. The motivation for focusing on the local
structure is to observe if any coding patterns would emerge
as significant features for a different kind of Malware.

2.4.2 Doc2Vec
Doc2Vec is a technique used in the domain of natural
language processing (NLP). Since, the WL hash algorithm
uniquely relabels nodes with information about its neigh-
bors, the list of new node labels can be considered as a
representation of the graph. If the labels are considered as
words, each graph can be considered a document with a

set of words. First, a vocabulary is constructed by using the
most frequent words. Then Word2Vec is used to measure
the similarity. Word2Vec uses a skip-gram approach using
a shallow neural network to predict the closeness of the
words. Finally, a low-dimensional vector is created for each
document (graph).

2.5 Unsupervised Clustering

Unsupervised clustering is a machine learning technique
where an algorithm tries to group the data points in the
detests using some heuristic criteria without using any
knowledge about prior existing group information. This is
typically a challenging problem since the algorithm does not
know how many data clusters (groups) exist. Some common
heuristics used are similarities (density) and differences
(distances). In this work, we are using several unsupervised
clustering algorithms provided in the scikit-learn toolbox:
k-means clustering, spectral clustering, DBSCAN, and ag-
glomerative clustering.

In k-means clustering, the algorithm attempts to divide
the data into k number of groups by minimizing the vari-
ance within the cluster. The number of k clusters has to
be predetermined by the user. In spectral clustering, data
is first embedded into a low dimensional manifold then
clustering is performed by using k-means clustering. Again,
the number of clusters has to be pre-determined by the user.
In DBSCAN data is clustered by separating high-density
areas into clusters. Therefore the final number of clusters
is unpredictable and low data points in low-density areas
are categorized as noise. The hyper-parameters include the
density factor and the minimum number of data points
per cluster. In agglomerative clustering, initial clusters are
divided and merged as a tree structure using nested cluster-
ing. In scikit-learn a bottom-up approach is used to combine
each data point into clusters using a distance measurement.
The distance measurement and the number of clusters have
to be pre-determined.

3 EXPERIMENT

The overall experimental workflow is shown in Figure 3.
The workflow consists of two pipelines. The left pipeline is
for training purposes and the right pipeline is for testing
programs. Clear separation is maintained between the two
pipelines to reduce the over-fitting of the models. Only the
trained models are used for testing purposes.

3.1 Dataset

The dataset associated with this work consists of 3000 ma-
licious files and 3000 benign files. Malware samples were
provided for this research by local cybersecurity company
Hoplite Industries 9. This collection of malware is an aggre-
gation of samples collected from VirusTotal.com10, honey-
pots, and personal cybersecurity connections. The collection
of malware includes several different types of malware,
such as trojans, viruses, and droppers. The malware sam-
ples consisted of many different file types, but only PE

9. https://www.hopliteindustries.com/
10. https://www.virustotal.com

MALWARE DETECTION BY CFG ANALYSIS, DECEMBER 2022 4

Fig. 3. Overall workflow of the data. The dataset is divided into training
and testing sets. The training set is used to train the Doc2V ec model
and the clustering models. The trained models are applied to the testing
set to evaluate the performance.

executable and ELF binaries were evaluated in this research.
For benign programs, operating system files were collected
from versions of Windows and Linux. This includes trusted
DLL files and benign Linux executables. The summary of
categories of malware in the dataset is given in the Github
repository.

3.2 Control Flow Generation

CFG generation was done using the python library angr,
which provides two different methods for generating con-
trol flow graphs: CFGFast, and CFGEmulated 11. CFGFast is
a static analysis method where the program is evaluated
in random positions. CFGEmulated is a dynamic analysis
method where the program is emulated using symbolic exe-
cution to identify the flow paths. Although more accurate
than CFGFast, this method takes more time. Further the
accuracy is bounded by emulation restraints like missing
hardware modules, system calls, and the choice of hyper-
parameters. For this project we have chosen CFGEmulated
as the CFG generation method. This is because we have
prioritized the accuracy of the CFGs that are generated
rather than the time it takes to generate them. One of the
parameters for the CFGemulated is the context sensitivity. In
this project we chose context sensitivity level 312.

11. https://docs.angr.io/built-in-analyses/cfg
12. https://docs.angr.io/built-in-analyses/cfg#

context-sensitivity-level

Fig. 4. Two dimensional representation of 32-dimensional Doc2Vec rep-
resentation

3.3 Graph embedding

The generated graphs have to be represented with a fixed-
length vector. First, WL hash relabelling is conducted for
each graph independently. This is computationally expen-
sive since, for each graph, an exhaustive search is con-
ducted. However, this step can be conducted independently
for each graph. Two iterations of the WL hash are chosen
as a compromise between computational cost and sub-tree
structure.

A portion of the training set is then used to build the
vocabulary and train the Doc2Vec model. The model dimen-
sions considered are (2, 4, 8, 16, 32, 64, 128, 256). Next, the
trained Doc2Vec model is used to infer the training set for
the unsupervised clustering. As an example, Figure 4 shows
the 2 dimensional tSNE [17] representation, where tsne is
a method for visualizing high dimensional data in a low
dimension with statistical relationships. While some clear
groupings of CFGs can be observed in the figure, there is
also a significant overlap present. Further investigation is
required to identify which features or CFG sub-tree patterns
correspond to each grouping.

3.4 Unsupervised Clustering

To identify the clusters in the generated vectors, four un-
supervised clustering methods were employed. For each
method, a grid search is conducted with hold-out validation
to determine the hyperparameters.

Several clustering evaluation metrics were measured for
each clustering algorithm to determine the “best” hyper-
parameters. Since this is not an exhaustive search “best”
is among the considered options. The considered cluster
evaluation metrics are as follows: RAND index, Adjusted
RAND index (ARAND), Mutual information score (MIS),
Adjusted mutual information score (AMIS), Normalized
mutual information score (NMIS), Homogeneity (Hmg),
Completeness (Cmplt), and V-measure (V meas).13

Finally the clustering models trained using the best
hyperparameters are utilized to predict the clustering for the
training test. The best parameter predicted by each metric is
shown in Table 1.

13. https://scikit-learn.org/stable/modules/clustering.html#
clustering-performance-evaluation

MALWARE DETECTION BY CFG ANALYSIS, DECEMBER 2022 5

TABLE 1
Best hyper-parameters predicted through different metrics

Metric
K-means Spectral Agglomerative DBSCAN
dim # Clusters dim # Clusters dim # Clusters dim density

RAND 128 5 8 19 128 2 8 0.80
ARAND 128 5 8 19 128 2 8 0.80
MIS 64 29 4 28 128 26 64 0.25
AMIS 64 3 8 14 128 2 8 0.75
NMIS 64 3 8 14 128 2 8 0.75
Hmg 64 29 4 28 128 26 64 0.25
Cmplt 64 3 8 14 128 2 2 0.45
V meas 64 3 8 14 128 2 8 0.75
Best 128 5 8 14 128 2 8 0.75

TABLE 2
Contingency matrix for the validation set with 64 dimensions and 3

clusters with K-means

Clusters No 1 2 3
Benign 493 412 34
Malware 619 3 359
Cluster label (manual) Suspicious Benign Malware

TABLE 3
Contingency matrix for the validation set with 128 dimensions and 5

clusters with K-means. (** : manually assigned cluster labels)

Cluster 1 2 3 4 5
Benign 44 374 167 14 340
Malware 0 0 87 383 511
** Benign Benign Sus. Malware Malware

3.5 Results

The choice of which metric represents the best clustering
decision must be studied further. As an example, we will
consider the K-means clustering method. Table 2 and Table 3
list the contingency matrices for the validation dataset using
64 dimensions and 3 clusters (Table 2) and 128 dimensions
and 5 clusters (Table 3). If we want to incorporate the labels,
we can assign manual labels to each cluster to evaluate the
test set. As the number of clusters increases, intuitive man-
ual labeling is not feasible. Hence, we limited the maximum
number of clusters to 30.

It can be observed that, even with the best parameters,
some groupings have significant overlap. This means our
vector representation must be further improved to achieve
better results. Finally, the clustering models trained using
the best hyperparameters are utilized to predict the clus-
tering for the training test. Considering the above predic-
tions 128 dimensions with 5 clusters were chosen for k-
means clustering. Figure 5 shows the ground truth of the
test dataset and the predicted classes with the k-means
algorithm. Table 4 show the contingency matrix for the
test results. As seen the methodology was able to perfectly
group cluster 1 and cluster 2 for only benign data, safely
grouping about 62% of the benign programs.

Table 5 shows the evaluation scores of the test set for
all the clustering algorithms. Unfortunately, the metrics do
not have high values. The two-dimensional representation

of clustering on the test dataset is shown in Figure 6 (ag-
glomerative clustering), Figure 7 (spectral clustering), and
Figure 8 (DBSCAN).

4 DISCUSSION

The generated Graph2Vec embedding in Figure 4 shows
some form of inherent grouping of programs. However
when clustering algorithms were employed they were not
able perform well.

TABLE 4
Contingency matrix for test set with 128 dimensions 5 clusters with

K-means.

Clusters No 1 2 3 4 5
Benign 89 531 113 13 254
Malware 0 0 90 401 509
Total 89 531 203 414 763

While the visual representation of clusters shows that
the methods presented have promise, the numerical perfor-
mance of unsupervised clustering is not impressive. Super-
vised clustering and transfer learning have stronger training
procedures that result in more accurate classifiers. However,
unsupervised methods can be trained without having a
priori knowledge of which specific data samples (if any)
are malware. Thus, unsupervised clustering may generalize
better to never-before-seen types of malicious software.

TABLE 5
Evaluation metric scores for the test dataset with best

hyper-parameters

Metric K-means Spectral Agglomerative DBSCAN
RAND 0.626 0.611 0.687 0.521
ARAND 0.252 0.221 0.374 0.042
MIS 0.352 0.333 0.282 0.323
AMIS 0.333 0.318 0.431 0.144
NMIS 0.333 0.321 0.431 0.194
Hmg 0.507 0.480 0.407 0.467
Cmplt 0.248 0.240 0.458 0.122
V meas 0.333 0.321 0.431 0.194

Although the clustering results are not significant, the
methods seem promising: some of the malware and benign
programs settled into defined groups. However, there are

MALWARE DETECTION BY CFG ANALYSIS, DECEMBER 2022 6

(a) (b)

Fig. 5. K-means clustering predictions for the test set with best hyper-parameters. Left, ground truth labels of the test set. Right, cluster predictions.

(a) (b)

Fig. 6. Agglomerative clustering predictions for the test set with best hyper-parameters. Left, ground truth labels of the test set. Right, cluster
predictions.

(a) (b)

Fig. 7. Spectral clustering predictions for the test set with best hyper-parameters. Left, ground truth labels of the test set. Right, cluster predictions.

groups with significant overlap and there is need of further
study to identify the causes. The unsupervised clustering
algorithms were only capable of uniquely distinguishing

just over half of the programs with high separation. This
means the vector representation must be more customized
to be able to achieve higher separability between the classes.

MALWARE DETECTION BY CFG ANALYSIS, DECEMBER 2022 7

(a) (b)

Fig. 8. Spectral clustering predictions for the test set with best hyper-parameters. Left, ground truth labels of the test set. Right, cluster predictions.

4.1 Threats to validity
Authors in Arp et el. [18] have recently conducted a study
on the effectiveness of the usage of machine learning in the
security domain. They have identified ten pitfalls prevailing
in the research domain. Our framework is also susceptible
to these pitfalls. Some major pitfalls identified according
to the criteria are: (P − 1) Sampling Bias, The dataset
we have considered does not represent the whole domain
of malware and benign programs. Hence applicability is
limited. (P − 3) Data Snooping, The data is split between
training and testing randomly. Since we have not considered
temporal distribution or the technological distribution of the
programs, it is possible that the training set can contain
the latest malware info. Which could reduce the models’
performance if unknown or newer programs are presented.
(P−4) Spurious Correlations The models may learn specific
patterns instead of general patterns. Especially due to CFG
generation stage, the model might learn artifacts from the
data processing stage as its features. (P − 5) Biased Param-
eter Selection The selected parameters can be over-fitted to
this specific dataset and might not be generalized. Hence
the actual performance can be much worse than reported.
(P−6) Inappropriate Baseline Although we have compared
four clustering methods we have only considered a single
graph embedding for this dataset. (P−7) Inappropriate Per-
formance Measures, The different clustering performance
metrics give different scores. Hence further study has to
be carried out to identify which metrics work best for this
task. (P − 8) Base Rate Fallacy, The dataset we considered
has a balanced number of malware and benign programs
and thus might not represent the actual distribution of real-
world applications. (P−9) Lab-Only Evaluation, The model
has not been tested on a real-world setting. Hence further
development is required. (P − 10) Inappropriate Threat
Model, Since the machine learning model is susceptible
to being exploited by adversaries. An analysis should be
conducted regarding the vulnerability of the model.

4.2 Future directions
• CFG generation. For this project we have used the angr

python package for CFG generation. However it can be

Fig. 9. Conceptual authentication bypass vulnerability

observed that the methods used for generating CFGs are
not capable of perfectly constructing CFGs from binary
files. Understanding these shortcomings would help bet-
ter represent binary files as graphs.

• Node labelling. In this work, we have replaced the node
labels with the number of neighbors the node has. Doing
so removes some information about the CFG. However it
is challenging to come up with a unifying node labelling
system. In CFG generation, when clear function names are
not present the angr tool assigns a memory location as the
node name. However, the memory location is dependent
on architecture and the compiler used. Also, node labels
can be the function names given by the programmer.
Therefore a unifying node labelling procedure is required
to label similar functions with similar names. For exmaple,
keeping basic function names (eg. puts()) intact for WL
hash procedure will help preserve some information.

• Sub-tree structure analysis. It would be interesting to
analyze the relationship between the learned sub-tree
structures and the groupings in the vector representa-
tions. Since these sub-tree structures correspond to certain
coding patterns, it would be interesting to identify and
evaluate which patterns are common or have a high occur-
rence in malware groupings. An example of an idealized
backdoor vulnerability is shown in Figure 9 [19]14 that
shows a clear graph sub-tree structure. A similar structure
may exist in other malware types.

• Simpler and/or linear graph embedding method. Since
the Doc2Vec model is a neural network, it is not intuitive

14. https://www.ndss-symposium.org/wp-content/uploads/2017/
09/11Firmalice.slide .pdf

MALWARE DETECTION BY CFG ANALYSIS, DECEMBER 2022 8

how the final vector representation is related to the origi-
nal graph sub-tree features. Linear dictionary learning and
sparse representation methods could be a candidate for
constructing a more intuitive vector representation with a
set of known coding patterns.

• Incorporating graph edge information. In typical CFGs,
the edges do not contain any information or weight,
meaning each function call or node connection is con-
sidered equal. However, we could incorporate a weight
for the edges that represent the calling function’s compu-
tational complexity. It would help identify if a program
keep calling a computationally expensive function. One
possibility is to consider the count of assembly code lines
in a function as the weight of its incoming edge.

• Exploring alternate embedding algorithms. Since the
vector representations contain some mixed groupings
and many isolated groupings, the evaluated algorithms
failed clustering using a low number of clusters. Dif-
ferent embedding or clustering methods could improve
performance by maximizing inter-class separation and
minimizing intra-class separation in the vector space.

5 CONCLUSION

This paper provides a framework for applying unsuper-
vised clustering for malware detection. The framework em-
ploys CFGs and Graph2Vec algorithm to represent a pro-
gram as a fixed length vector. Then several unsupervised
clustering techniques were utilized to cluster the vectors.
The results are promising in showing that several clusters
can be uniquely associated with each class. However, the
results are not conclusive and need further evaluation. The
paper put forth several challenges in this process, future
improvements, and directions. The source code and the
dataset is publicly available for further investigation.

ACKNOWLEDGMENTS

The authors would like to thank researchers from Idaho Na-
tional Lab for their input throughout the manuscript prepa-
ration process. We would also like to acknowledge pre-
liminary work done by Veronika Strnadová-Neeley, Daniel
Laden, David Opitz, Andrew Rippy, and Shayla Sharma.

REFERENCES

[1] V. Strandova-Neeley, D. Laden, R. Pearsall, D. Optiz, A. Rippy,
and S. Sharma, “Graph-based analysis of binary code for malware
detection and vulnerability identification,” Cyber QR ops report,
2021.

[2] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning distributed representations
of graphs,” arXiv preprint arXiv:1707.05005, 2017. [Online].
Available: https://arxiv.org/pdf/1707.05005.pdf

[3] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels.”
Journal of Machine Learning Research, vol. 12, no. 9, 2011.
[Online]. Available: https://www.jmlr.org/papers/volume12/
shervashidze11a/shervashidze11a.pdf

[4] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in International conference on machine learning.
PMLR, 2014, pp. 1188–1196.

[5] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings
of the 7th Python in Science Conference, G. Varoquaux, T. Vaught,
and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[6] B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate Club: An API Ori-
ented Open-source Python Framework for Unsupervised Learning
on Graphs,” in Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20). ACM, 2020,
p. 3125–3132.

[7] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary
analysis,” in IEEE Symposium on Security and Privacy, 2016.

[8] C. Cai and Y. Wang, “A simple yet effective baseline for non-
attributed graph classification,” arXiv preprint arXiv:1811.03508,
2018.

[9] K. Tu, J. Li, D. Towsley, D. Braines, and L. Turner, “Learning
features of network structures using graphlets,” arXiv preprint
arXiv:1811.03508, 2018.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[11] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic
malware analysis in the modern era—a state of the art survey,”
ACM Comput. Surv., vol. 52, no. 5, sep 2019. [Online]. Available:
https://doi.org/10.1145/3329786

[12] Z. Bazrafshan, H. Hashemi, S. M. Hazrati Fard, and A. Hamzeh,
“A survey on heuristic malware detection techniques,” 05 2013,
pp. 113–120.

[13] H. Xue, S. Sun, G. Venkataramani, and T. Lan, “Machine learning-
based analysis of program binaries: A comprehensive study,” IEEE
Access, vol. 7, pp. 65 889–65 912, 2019.

[14] Z. Akhtar, “Malware detection and analysis: Challenges and re-
search opportunities,” arXiv preprint arXiv:2101.08429, 2021.

[15] Z. Liu, C. Chen, A. Ejaz, D. Liu, and J. Zhang, “Automated binary
analysis: A survey,” in Algorithms and Architectures for Parallel
Processing. Springer Nature Switzerland, 2023, pp. 392–411.

[16] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph
kernels,” Applied Network Science, vol. 5, no. 1, pp. 1–42, 2020.

[17] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

[18] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and don’ts
of machine learning in computer security,” in Proc. of USENIX
Security Symposium, 2022.

[19] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulner-
abilities in binary firmware,” in NDSS, 2015.

Kaveen G. Liyanage received his BS in Electrical and Electronic En-
gineering from the University of Peradeniya, Sri Lanka. He is currently
a graduate student at Montana State University in Bozeman, MT. His
research focuses on signal processing, sparse representation, and ma-
chine learning.

Reese Pearsall received his BS and MS in Computer Science from
Montana State University in Bozeman, MT. He is currently an Instructor
of Computer Science and Cybersecurity at Montana State University.
His research interests include cybersecurity, malware analysis, malware
detection, and cybercrime.

Clemente Izurieta received a BS in Mathematics from the University
of Wollongong, and an M.S. in Computer Science from Montana State
University. Dr. Izurieta received his Ph.D. in Computer Science from
Colorado State University and is now a Professor at Montana State
University in Bozeman, MT. His research focuses on Empirical Software
Engineering, Quality Assurance, and Technical Debt.

Bradley M. Whitaker received his BS in Electrical Engineering from
Brigham Young University and his M.S. and Ph.D. in Electrical and
Computer Engineering from the Georgia Institute of Technology. Dr.
Whitaker is now an Assistant Professor at Montana State University in
Bozeman, MT. His research focuses on signal processing and machine
learning, with applications in healthcare, military surveillance, and re-
mote sensing.

